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Abstract

This paper addresses the problem of scheduling randomly arriving tasks of di�erent types at a diversi®ed service

system. Servers at such a system di�er in that each may specialize in one task type, but can also perform others perhaps

less rapidly and adequately than does a specialist. We consider the issue of how much redirection of tasks from spe-

cialists to non-specialists may be desirable in such a system and propose a static model in which tasks are randomly

assigned to servers. Two scheduling strategies for individual servers are also considered: one in which each server

performs the tasks assigned to him or her in order of their arrival and the second in which each server schedules his or

her workload optimally. The problems for ®nding the best random assignment probabilities are formulated as math-

ematical programs. Results from a numerical example provide information that is both informative and useful in

decision-making. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider a diversi®ed service system whose
constituent service facilities or servers are unequal
in their capacities (or training) to perform di�erent
tasks. Usually, a type-j task is most expeditiously
handled by server i�j�, and quanti®ably less so by
others. Although there are many examples (see,
e.g., Stanford and Grassmann, 1993; Green, 1985)

for such a system, our work was motivated by call
centers (Mehrotra, 1997) of companies producing
multiple types of products. Customers telephone
these centers for service or technical support.
These telephone calls are then routed or assigned
to agents or technicians. Preferably, calls con-
cerning, say, product A should be handled or
routed to agents or technicians with expertise in
product A. This practice ensures that calls are
handled properly and e�ciently. When demands
for support are not uniform across the companyÕs
products, such a policy may overload the servers
with expertise in, say, new products with a higher
sales volume. To lessen the load on these servers
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and, perhaps, to shorten the customer waiting
time, some calls may be assigned or routed to less
e�cient or non-expert servers.

There are both static and dynamic strategies for
assigning tasks (or calls) to or balancing work-
loads among servers. Dynamic strategies generally
o�er the possibility of improved task assignment,
and possibly reassignment, at the expense of ad-
ditional information, communication, and pro-
cessing overhead. For call centers, this overhead
may not be too expensive. A number of computer
telephony integration (CTI) systems monitor and
frequently provide the status for servers and call
center operations. However, developing a strategy
that optimally takes advantage of information
provided by these systems is involved. Many
commercial CTI systems seem to o�er automatic
call distribution or routing without revealing any
systematic methodology for determining an Ôopti-
malÕ strategy. On the other hand, simple myopic
distribution or routing policies based on the latest
system status may be self-defeating under heavy
call tra�c.

In the literature, there are several papers on
dynamic load balancing strategies for similar
systems. Gaver et al. (1993) consider dynamic
complete-service assignment rules for a general-
ized repairman problem. For distributed com-
puter systems, Eager et al. (1986a,b) and Zhou
(1988) propose load-balancing heuristics that re-
duce response times in moderate to heavy tra�c.
Perhaps, ideas in these papers can be applied to
call centers; they are worthy topics for future
investigation.

This paper focuses on static strategies. Gen-
erally, they allocate tasks to servers in a deter-
ministic or randomized fashion, typically
independent of the system status. As such, these
strategies are reasonable for situations in which
the system status is not readily available or too
expensive and di�cult to monitor and control
well in real time.

For call centers, some commercial CTI systems
allow distribution or routing parameters to be
adjusted or modi®ed periodically, perhaps in re-
sponse to the newly updated system status or
forecasted system parameters, e.g., call arrival
rates. In such systems, static strategies can be used

to determine the ÔoptimalÕ (routing) parameter
adjustments periodically. Implemented in this
manner, a frequently recomputed static strategy
exhibits a dynamic, but not totally myopic, be-
havior. Moreover, static strategies are useful for
skill-based workforce management, scheduling,
and in setting service objectives. These strategies
also lead to technically manageable models for
quantifying the bene®ts of additional server
training to improve service times or to acquire new
skills.

One static strategy is to assign an incoming
type-j task to server i with probability aji. Intu-
itively, aji is simply a fraction or percentage of
type-j tasks that is allocated to server i. (If aji � 1
for i � i�j� and aji � 0 for i 6� i�j�, for every j, then
the assignment is deterministic.) This approach
allows the service stations to be treated as a set of
independent M/G/1 queues. To determine the
proper values for the decision variables aji, this
paper relies on a combination of results from
classical M/G/1 queuing theory and from optimi-
zation. The use of optimization techniques to al-
locate resources in queues is not new. For
example, Shanthikumar and Yao (1992) describe a
mathematical programming approach to schedul-
ing control in the context of multi-class queuing
systems; Ross and Yao (1991) study the problem
of balancing workloads on computers connected
by a network; and Berman et al. (1990) address
optimal location problems in a stochastic envi-
ronment. In these studies, the resulting optimiza-
tion problems are often di�cult and require
specialized or heuristic techniques to obtain solu-
tions, optimal or otherwise. The optimization
problems in this paper are relatively simple and
can be e�ectively and e�ciently solved using
commonly available software.

In Section 2, we present the model, provide
basic results, and pose a generic optimization
problem whose solution will yield the assignment
probabilities. Using queuing theory, Section 3
develops two delay-based objective functions for
the optimization problem. A numerical study is
described in Section 4 and the paper concludes
with a discussion in Section 5 of alternative per-
formance measures that penalize long delays
more severely.
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2. Model

Assume that there are J task types and I serv-
ers, each with di�erent expertise. Tasks (calls) ar-
rive at the system as a Poisson process with rate k.
An arriving task is of type j, where j 2 {1; . . . ; J},
with an independent probability pj. The ability of
each server to perform tasks of di�erent types is
re¯ected in his or her service time for each task
type. The service time for a type-j task by server i is
denoted by Sji and may vary systematically with i
for a variety of reasons, one being the extent of the
ith serverÕs training for or experience with type-j
tasks. When server i is unable to handle type-j
tasks, Sji is assumed to be in®nite almost surely.
This is a case of total incompatibility and certainly
exists in many practical settings.

When the decision variables aji are given, the
tasks arrive at server i, i 2 {1; . . . ; I}, at rate ki,
where

ki � k
XJ

j�1

pjaji � �pi: �2:1�

By standard results, ki is the rate of a process in-
dependent of those prevailing for other servers
(¹i). In addition, moments of the so-called e�ective
service time, Si, of tasks arriving at server i can be
computed. An incoming task is of type j with
probability pj and it experiences service time Sji, if
it is dispatched to server i. Hence,

Prob�Si � Sji� � pjaji

�pi
:

The ®rst two moments of Si can be calculated by
conditioning, i.e.,

E Si� � �
XJ

j�1

E Sji

� �
pjaji

,
�pi; �2:2�

E S2
i

� � �XJ

j�1

E S2
ji

h i
pjaji

,
�pi: �2:3�

From Eq. (2.1) and (2.2), the ith serverÕs tra�c
intensity is given by

qi � kiE Si� � � k�piE Si� � � k
XJ

j�1

E Sji

� �
pjaji: �2:4�

To be a valid set of assignment probabilities,
each aji must be nonnegative such thatPI

i�1 aji � 1, for all j. To ensure that each server
can complete his or her assigned tasks, the result-
ing qi in Eq. (2.4) must be less than 1 for all i. This
last condition renders all deterministic assignments
infeasible in certain cases. In particular, if
kpjE�Sji�P 1 for all i, then no one server can
handle all type-j tasks and they must be distributed
among several servers.

In order to determine a set of assignment
probabilities, we formulate an optimization prob-
lem of the following kind:

P : min
aji

f �a�
s:t:

k
XJ

j�1

pjajiE Sji

� �
< 1; i � 1; . . . ; I ;

XI

i�1

aji � 1; j � 1; . . . ; J ;

aji P 0; i � 1; . . . ; I ; j � 1; . . . ; J ;

�2:5�

where f �a� denotes a measure of system perfor-
mance. Although technically correct, Eq. (2.5) is
not numerically implementable and is usually re-
placed by an inequality of the form

k
XJ

j�1

pjajiE Sji

� �
6 1ÿ e; i � 1; . . . ; I ; �2:5a�

for some small e > 0.

3. Total task delay

One standard choice of performance measure
f �a� for problem P is a total of expected delays.
Clearly, delays depend upon the aji. However, the
scheduling strategy used by each server will also
have an e�ect. Below, two scheduling strategies are
examined. One makes the standard assumption
that each server performs his or her assigned tasks
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according to their arrival order, i.e., ®rst-come-
®rst-serve (FCFS), while the other allows each
server to schedule the assigned tasks to minimize
his or her own expected weighted delay.

Many call centers adopt FCFS, for it is believed
to be a fair way to treat customers. To obtain the
total expected delay under FCFS, the Pollaczek±
Khintchine±Kendall formula provides the expect-
ed long-run waiting time E[W] for an M/G/1 sys-
tem. In our case, the expected long-run waiting
time for server i is

E Wi� � � kiE S2
i

� � 1

2 1ÿ qi� � ; if qi < 1; �3:1�

where E�S2
i � and qi are as given in Eq. (2.3) and

(2.4), respectively. The total expected delay for a
type-j task is easily seen to be

E Dj

� � �XI

i�1

aji E Wi� �
ÿ � E Sji

� ��
: �3:2�

Note that Eq. (3.2) becomes in®nite if any q P 1.
The total expected long-run weighted delay (per
unit time) under FCFS is

f �a� � DFCFS�a�

�
XJ

j�1

kpjbjE�Dj�

�
XJ

j�1

kpjbj

XI

i�1

aji E Wi� �
ÿ"

� E Sji

� ��#
;

where bj is the weight for the delay of type-j tasks.
Under FCFS, customers may experience longer

waiting times than necessary. Following the ap-
proach in Ross and Yao (1991), a natural exten-
sion of the above model is to allow each server to
schedule his or her assigned tasks optimally. Then,
the associated performance measure can be ex-
pressed as

f �a� � DOPT�a� �
XI

i�1

DOPT
i �ai�;

where DOPT
i �ai� is the total expected weighted delay

arising from server i when the latter schedules his
or her tra�c optimally. The optimization con-

cerned is over the class of work-conserving strat-
egies with priorities imposed in a non-preemptive
fashion (i.e., a task, once started, is always pro-
cessed to completion before any other task is
granted access to the server). A classic result due to
Fife (1965) (see also Kleinrock, 1976) indicates
that the optimal scheduling strategy for server i
takes the following simple form: renumber the task
types such that

b1

E�S1i� 6
b2

E�S2i� 6 � � � 6
bJ

E�SJi� :

It is optimal for server i to process tasks in de-
creasing numerical order of the type identi®er.
Hence at each decision epoch, server i will next
choose to serve the task with the largest type
number present in the system. It is a consequence
of the ground breaking analysis of this result based
on work conservation principles in Gelenbe and
Mitrani (1980) that DOPT

i �ai� is given by the fol-
lowing expression:

DOPT
i �ai� �

b1

E�S1i� g� 1; 2; . . . ; Jf g�

� b2

E�S2i�
�

ÿ b1

E�S1i�
�

g� 2; 3; . . . ; Jf g�

� b3

E�S3i�
�

ÿ b2

E�S2i�
�

g� 3; 4; . . . ; Jf g�

� � � � � bJ

E�SJi�
�

ÿ b�Jÿ1�
E�S�Jÿ1�i�

�
g� Jf g�;

where

g�X� �
1
2

PJ
j�1 kpjajiE�S2

ji�
� � P

j2X kpjajiE�Sji�
� �

1ÿPj2X kpjajiE�Sji��
� �

�
X
j2X

kpjaji�E�Sji��2

for any X � f1; 2; . . . ; Jg.
Clearly, DOPT�a�6DFCFS�a� for all �a�, since

FCFS is a feasible task schedule. However, it is not
clear that call centers should switch to the logisti-
cally more complex optimal scheduling strategy
based on this result alone. The next section con-
tains an illustrative numerical comparison between
the two approaches to local scheduling.
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4. Numerical study

Assume that the service time, Sji, has a gamma
distribution with parameters ai and kijbi. Under
this assumption, the ®rst two moments can be
written as

E�Sij� � kijbi=ai

and

E�S2
ji� � � kjibi

ÿ �2 � kjibi�=a2
i :

For our example, kji � jjÿ ij � 1. Under this
choice of kji, every server is capable of performing
all J tasks, but not necessarily at the same level of
e�ciency. The mean and variance of a service time
for type-j tasks by server i are the smallest when
j� i. In this sense, we consider server i as the ex-
pert for type-i tasks. For others, server i takes
longer to perform a type-j task when j 6� i and the
expected service time depends on the di�erence
between j and i. A larger di�erence means a longer
expected service time.

Problem P in Section 2 and the total task delay
functions for the two scheduling strategies in Sec-
tion 3 (i.e., the optimal strategy and FCFS) only
make use of the ®rst two moments of the service
time distribution. Hence, the optimal assignment
probabilities depend only upon the ®rst two mo-
ments. So, as long as its ®rst two moments match
the desired values, the gamma distribution is ade-
quate for our study and provides considerable
¯exibility in modeling service times. However, any
other distributional assumption yielding the same
®rst and second moments would also generate
identical results throughout. Of course, the same
generally does not hold for other objective func-
tions or performance measures, e.g., those de-
scribed in the next section.

Although somewhat arbitrary, our choice for
kijÕs is intended mainly to distinguish the skills or
capabilities among the servers. Other choices for
kijÕs are possible and would have a signi®cant im-
pact on the optimal assignment probabilities.
Di�erent values for kijÕs would yield di�erent ®rst
and second moments for the service times. In turn,
these moments would generate di�erent task delay
functions and optimal assignment probabilities.

For our study, I� 5, J� 5, ai� 2, bi� 1, and
bj� 1. (Recall that bjÕs are weights for task delays.)
Also, the arriving tasks are of type j with proba-
bility pj� 0.35 ± 0.05j for j� 1; 2; . . . ; 5. Thus,
type-1 tasks arrive at the system or call center most
frequently and type-5 tasks, the least frequently.

To select meaningful arrival rates for our study,
we ®rst determine the maximum arrival rate that
allows every serverÕs tra�c intensity to be no
greater than one. This is accomplished by solving
the following optimization problem.

kmax � max
k;aji

k

s:t:

k
XJ

j�1

pjajiE Sji

� �
6 1; i � 1; . . . ; I ;

XI

i�1

aji � 1; j � 1; . . . ; J ;

aji P 0; i � 1; . . . ; I ; j � 1; . . . ; J :

Intuitively, kmax is the maximum task tra�c that
can be admitted or is feasible to the system.

Initially, the arrival rate k is set at 7.88 or 95%
of kmax (� 8.29). Problem P, with e� 0.01 in Eq.
(2.5a), was solved twice using a commercial opti-
mization package called GAMS (see Brooke et al.,
1992), once with f �a� � DFCFS�a� and the other
with f �a� � DOPT�a�. In general, neither DFCFS�a�
nor DOPT�a� is convex and a solution found by
GAMS may not be globally optimal. In fact,
GAMS can only guarantee locally optimal solu-
tions to problem P when the objective function
f �a� is not convex. In an attempt to ®nd a good
solution for each objective, 10 sets of randomly
generated assignment probabilities were used to
start or initialize the optimization algorithm. Each
set of initial assignment probabilities may or may
not generate a new locally optimal solution to
problem P. The assignment probabilities displayed
in Tables 1 and 2 are the locally optimal solutions
with the smallest DFCFS�a� and DOPT�a�, respec-
tively.
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For the assignment probabilities in Tables 1
and 2, the total expected delay is 89.47 under
FCFS and 66.67 under the optimal scheduling
strategy. (See Tables 3 and 4 below.) Although
server 1 is the expert at performing type-1 tasks, he
or she cannot service all of them because
kp1E[S11] > 1. Hence, some type-1 tasks must be
assigned to non-expert servers. If all of type-2
tasks are allocated to server 2, his or her tra�c
intensity is 0.99. In order to minimize total ex-

pected delay, it is also advantageous to allocate
some type-2 tasks to non-expert servers.

The diagonal elements in Table 2 are slightly
smaller that those of Table 1. This indicates that
the quantity of work allocated to non-expert
servers is slightly greater when servers schedule
their own assigned tasks optimally. Averaging
over the diagonal elements of Table 1, the FCFS
strategy allocates 95.73% of the tasks to the ex-
perts and the remaining 4.27% to non-expert

Table 2

Optimal task assignments using optimal scheduling strategy

Server 1 Server 2 Server 3 Server 4 Server 5

Type-1 task 0.8085 0.0082 0.0176 0.0744 0.0913

Type-2 task 0.9488 0.0512

Type-3 task 1.0000

Type-4 task 1.0000

Type-5 task 1.0000

Table 1

Optimal task assignments using FCFS strategy

Server 1 Server 2 Server 3 Server 4 Server 5

Type-1 task 0.8158 0.0256 0.0705 0.0881

Type-2 task 0.9705 0.0295

Type-3 task 1.0000

Type-4 task 1.0000

Type-5 task 1.0000

Table 3

Percentage of tasks assigned to non-expert servers

d kmax k used Percent of

kmax

FCFS strategy Optimal scheduling strategy

Expected

delay

Percent of tasks

to non-experts

Expected

delay

Percent of tasks

to non-experts

0.2 9.30 8.84 95 92.14 8.32 81.68 9.13

0.4 8.91 8.46 95 90.84 6.84 75.44 7.42

0.6 8.64 8.21 95 90.18 5.78 71.92 6.30

0.8 8.44 8.02 95 89.74 4.94 68.86 5.46

1.0 8.29 7.88 95 89.47 4.27 66.67 4.85

1.2 8.17 7.76 95 89.28 3.72 65.29 4.34

1.4 8.07 7.67 95 89.16 3.26 64.40 3.88

1.6 7.99 7.59 95 89.72 2.99 63.65 3.49

1.8 7.91 7.52 95 89.57 2.81 61.94 3.14

2.0 7.84 7.45 95 89.40 2.64 60.42 2.88
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servers. The corresponding ®gures for the optimal
scheduling strategy are 95.15% and 4.85%, re-
spectively.

When jjÿ ij � jjÿ nj, our choice of kji implies
that E�Sji� � E�Sjn� and E�S2

ji� � E�S2
jn�, i.e., server i

and n are equally capable at performing type-j
tasks. However, it is interesting to note that there
is a distinct server preference for the assignments
in Tables 1 and 2, in that aji� 0 if j > i. To explain
this preference, consider servers 1 and 3 as non-
expert servers for type-2 tasks. With respect to
these tasks, servers 1 and 3 are equally capable.
However, the e�ective arrival rate for type-3 tasks,
for which server 3 is the expert, is less than that of
type-1 tasks, for which server 1 is the expert. Since
E�Sii� and E�S2

ii� are 0.5 and 1.5 for all i, server 3 is
less busy with type-3 tasks than server 1 with type-
1 tasks. Thus, there would be less delay by sending
type-2 tasks to server 3 instead of server 1.

The quantity of work allocated to non-expert
servers also depends on their ability to service the
tasks for which they are not skilled or not properly
trained. In our numerical example, this lack of
ability grows with the parameter kji. To examine
its e�ects on the task assignment, kji is now given a
more general form djjÿ ij � 1. Table 3 displays
the percentage of work assigned to non-expert
servers for various values of d. As before, each
solution shown in the table is the best local opti-
mal solution among those obtained by solving
problem P using ten randomly chosen initial so-
lutions.

As d increases, server i is less versatile and takes
more time to service a type-j task, where j 6� i. So,
it becomes less bene®cial to assign tasks to non-
expert servers. For FCFS, the percentage of tasks
assigned to non-expert servers decreases from
8.32% to 2.64% as d increases from 0.2 to 2.0. We
observe a similar phenomenon under the optimal
scheduling strategy.

In Table 3, the task arrival rate is always 95% of
kmax. As d increases, tasks take more time to
complete at non-expert servers and it becomes less
bene®cial to redirect tasks to them. So, the maxi-
mum task tra�c that can be admitted or is feasible
to the system is restricted mainly by the amount of
work that the experts can handle. Therefore, kmax

decreases as d increases. Since the k in problem P is
always 95% of kmax, a smaller kmax means that a
smaller number of tasks arrive at the system. Next,
observe that our choices for the ®rst two moments
of the service time are independent of kmax. As d
increases (i.e., kmax decreases), the expert servers,
servers 1 and 2 in particular, can complete higher
percentage of their tasks and redirect less of them
to other (non-expert) servers. So, tasks are com-
pleted more quickly and the total expected delay
decreases as d increases.

Let �a�FCFS
and �a�OPT

denote the ÔbestÕ as-
signment probabilities under FCFS and the opti-
mal scheduling strategy, respectively. As before,
the Ôbest assignmentÕ refers to the best solution
among those obtained by solving problem P using
ten randomly generated initial assignment proba-

Table 4

Total expected delay with varying arrival rates

k Percent of kmax DFCFS�aFCFS� DOPT�aFCFS� DOPT�aOPT�
100
�DFCFS�aFCFS� ÿ DOPT�aOPT��

DFCFS�aFCFS�

4.15 50 4.14 4.14 4.14 0.00

4.56 55 5.15 5.15 5.14 0.07

4.98 60 6.45 6.43 6.42 0.63

5.39 65 8.14 8.03 8.00 1.78

5.81 70 10.40 10.11 10.03 3.54

6.22 75 13.56 12.92 12.74 6.00

6.63 80 18.30 16.96 16.61 9.22

7.05 85 26.20 23.39 22.72 13.31

7.46 90 42.02 35.61 34.22 18.56

7.88 95 89.47 70.48 66.67 25.48

8.21 99 523.99 326.17 326.17 37.75
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bilities. Table 4 displays the values of
DFCFS�aFCFS�, DOPT�aFCFS�, and DOPT�aOPT� for
di�erent arrival rates and d set equal to 1. Note
that DOPT�aFCFS� is the total expected delay using
the FCFS assignment probabilities while allowing
servers to schedule their assigned tasks optimally.

As listed in the 3rd and 5th columns of Table 4,
the optimal total expected delays using the two
scheduling strategies are similar when the arrival
rate is small. In particular, all three values, i.e., of
DFCFS�aFCFS�, DOPT�aFCFS�, and DOPT�aOPT�, are the
same when k� 4.14 or 50% of kmax. On the other
hand, as shown in the 6th column of Table 4, the
relative di�erence or e�ciency gained by using the
optimal scheduling strategy increases as the arrival
rate increases. In other words, the scheduling
strategy has little e�ect on the delay or optimal
task allocation in light tra�c. As the tra�c be-
comes heavier, the total expected delay improves
signi®cantly by using the optimal scheduling
strategy. Naturally, in the heavy tra�c limit
(qi� 1), all three delays would eventually become
in®nite. When k� 8.21 or 99% of kmax, aFCFS

equals aOPT in our example.
It is also interesting to compare DOPT�aFCFS�

and DOPT�aOPT�, the 4th and 5th columns of Table
4. Empirically, the results suggest that the FCFS
assignment is relatively robust for our example, in
the sense that it yields similar total expected delays
when the servers schedule optimally. Our calcula-
tions suggest that the FCFS assignment performs
particularly well in very light and very heavy
tra�c. When the tra�c is moderate to heavy, then
the optimal scheduling strategy yields less delay in
the example. However, it should be noted that our
model does not re¯ect the e�ort or resources
needed to implement the optimal scheduling
strategy by each server.

5. Extensions and conclusion

There are a number of performance measures
that can be used as an objective function for
problem P. In some cases, it is important that the
penalty for task delays be more stringent for long
tasks, and in a manner that the (linear) long-run
expectation of total delay does not re¯ect ade-

quately. One such penalty parameterization is ex-
ponential with the analysis focusing on E�ehiDi �,
with positive hi, rather than on E[Di]. Classical
M/G/1 theory says that the limiting transform of
Wi is given by

E�ehiWi � � �1ÿ qi� 1

��
ÿ qifE�ehiSi � ÿ 1g

hiE�Si�
�

provided the denominator is positive. To satisfy
the latter requirement, the rate of input to server i
must, in general, be smaller than the input allowed
by the expected long-run waiting time formula in
Eq. (3.1). Of course,

E ehiSi
� � �XJ

j�1

pjajiE ehiSji
� � XJ

j�1

pjaji

,

can quickly grow large, or become formally in®-
nite, depending on the assignment variables aji.
Following this route, the objective function for
problem P is de®ned to be

f �a� �
XJ

j�1

XI

i�1

pjbjajiE�ehiWi �E�ehiSji �:

This objective function di�ers signi®cantly from
previously mentioned system performance mea-
sures, all of which are linear in the individual task
or server performance measures. It is also possible
to de®ne a system measure as the maximum of the
individual measures, e.g., f �a� �maxj{E[Dj]}. This
type of system measures tends to yield an optimal
assignment, which renders the individual mea-
sures, e.g., the expected delay for all task types,
equal.

In conclusion, we propose a static model for
randomly allocating or assigning incoming tasks
to unequally capable servers. Because of the ran-
dom assignment, standard results from queuing
theory can be used to obtain closed form expres-
sions for the total expected delay under two dif-
ferent scheduling strategies. One is to schedule the
tasks for processing according to their arrival
order and the other is to allow each server to non-
preemptively schedule his or her workload in an
optimal manner. The problem of ®nding proba-
bility assignments that minimize the total expected
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delay is posed as a mathematical program which is
relatively simple and can be solved by standard
optimization software, reinforced by heuristic
methods to deal with the non-convexity of the
total expected delay functions.
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